A Comparison of Hierarchical Methods for Clustering Functional Data
نویسندگان
چکیده
منابع مشابه
A Comparison of Hierarchical Methods for Clustering Functional Data
Functional data analysis (FDA) — the analysis of data that can be considered a set of observed continuous functions — is an increasingly common class of statistical analysis. One of the most widely used FDA methods is the cluster analysis of functional data; however, little work has been done to compare the performance of clustering methods on functional data. In this paper a simulation study c...
متن کاملHIERARCHICAL DATA CLUSTERING MODEL FOR ANALYZING PASSENGERS’ TRIP IN HIGHWAYS
One of the most important issues in urban planning is developing sustainable public transportation. The basic condition for this purpose is analyzing current condition especially based on data. Data mining is a set of new techniques that are beyond statistical data analyzing. Clustering techniques is a subset of it that one of it’s techniques used for analyzing passengers’ trip. The result of...
متن کاملExcisive Hierarchical Clustering Methods for Network Data
We introduce two practical properties of hierarchical clustering methods for (possibly asymmetric) network data: excisiveness and linear scale preservation. The latter enforces imperviousness to change in units of measure whereas the former ensures local consistency of the clustering outcome. Algorithmically, excisiveness implies that we can reduce computational complexity by only clustering a ...
متن کاملa comprehensive comparison of different clustering methods for reliability analysis of microarray data
in this study, we considered some competitive learning methods which include hard competitive learning (hcl) and soft competitive learning (scl) with/ without fixed network dimensionality for reliability analysis in microarrays. in order to have a more extensive view, and keeping in mind that competitive learning methods aim at error minimization or entropy maximization (different kinds of func...
متن کاملHierarchical clustering of spatially correlated functional data
Classification problems of functional data arise naturally in many applications. Several approaches have been considered for solving the problem of finding groups based on functional data. In this paper we are interested in detecting groups when the functional data are spatially correlated. Our methodology allows to find spatially homogeneous groups of sites when the observations at each sampli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics - Simulation and Computation
سال: 2009
ISSN: 0361-0918,1532-4141
DOI: 10.1080/03610910903168603